
IBM OpenPages GRC
Version 8.0.0

OpenPages Business Process Author's
Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page 59.

iv IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Product Information

This document applies to IBM OpenPages GRC Version 8.0.0 and may also apply to subsequent releases.

Licensed Materials - Property of IBM Corporation.
© Copyright IBM Corporation, 2016, 2019.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

vi IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Contents

Note... iii

... v

Introduction... ix

Chapter 1. Overview ... 1

Chapter 2. OpenPages Platform Toolkit..3
Resources in the OpenPages Platform Toolkit..3

Chapter 3. OpenPages Solutions Toolkit... 5
Resources in the OpenPages Solutions Toolkit.. 5

Chapter 4. OpenPages integration services.. 7
OPAssociateChildren... 7
OPAssociateParents...7
OPCopyObjects ... 7
OPCreateObject... 8
OPDeleteObject..8
OPDissociateChildren.. 8
OPDissociateParents... 8
OPExecuteReportFragment... 9
OPGenericObjectQuery..9
OPGetBaseURL.. 10
OPGetChildAssociations..10
OPGetEnumeratedValues ... 10
OPGetObject.. 10
OPGetParentAssociations... 11
OPHierarchicalAssigneeQuery.. 11
OPHierarchicalQuery... 12
OPLaunchChildProcesses..12
OPLockObject...13
OPMakeAddNewLink .. 13
OPMakeDetailLink..14
OPMakeDocumentLink.. 14
OPMoveObjects..14
OPPerformRESTGet... 15
OPUnlockObject...15
OPUpdateObject ... 15
Team Filter by Object Field..16

Chapter 5. Process authoring examples..17
Using OPObjectSelection client-side human service ...17
Assigning a process task based on a field value .. 18
Adding rich text fields to a coach page... 19
Adding single or multiple enumerated fields to a coach page .. 20
Adding enumerated fields with a dependent picklist to a coach page.. 21
Adding computed fields to a coach page ... 23

 vii

Adding Owner fields to a coach page.. 23
Adding a link to an OpenPages Detail page on a coach page .. 25
Adding a link to a Cognos report on a coach page ... 27
Adding file attachments to a coach page.. 28
Downloading file attachments on coach pages.. 30
Creating OpenPages objects with an integration service... 32
Updating OpenPages objects with a client-side human service ... 34
Using localization resources..35
Defining basic hierarchical processes...37

Defining a child process... 37
Defining a parent process.. 38

Defining advanced hierarchical processes ...41
Defining a parent process to use OPLaunchChildProcesses.. 41
Extending a parent process to wait for child processes to complete...43

Retrieving a list of child objects...48
Locking and unlocking objects.. 49
Sending email notifications .. 49
Terminating a running process..52

Chapter 6. Error messages and handling.. 55
Error messages issued by integration services...55
Adding error handling to a client-side human service..56

Notices..59

Index.. 63

viii

Introduction

You can use IBM® Business Process Manager to develop and implement automated business process
solutions that meet the needs and requirements of IBM OpenPages® GRC Platform.

Audience

The IBM OpenPages Business Process Author's Guide is intended for business process authors. These
users develop workflow solutions and understand how IBM OpenPages GRC Platform and IBM Business
Process Manager are integrated.

Please read the following important information regarding IBM OpenPages GRC documentation

IBM maintains one set of documentation serving both cloud and on-premise IBM OpenPages GRC
deployments. The IBM OpenPages documentation describes certain features and functions which may
not be available in OpenPages GRC on Cloud. For example, OpenPages GRC on Cloud does not include
integration with IBM Business Process Manager and certain administrative functions.

If you have any questions about the functionality available in the product version that you are using,
please contact IBM OpenPages Support via the IBM Support Community.

Finding information

To find product documentation on the web, including all translated documentation, access IBM
Knowledge Center (http://www.ibm.com/support/knowledgecenter).

Accessibility features

Accessibility features help users who have a physical disability, such as restricted mobility or limited
vision, to use information technology products. IBM OpenPages GRC Platform documentation has
accessibility features. PDF documents are supplemental and include no added accessibility features.

Forward-looking statements

This documentation describes the current functionality of the product. References to items that are not
currently available may be included. No implication of any future availability should be inferred. Any such
references are not a commitment, promise, or legal obligation to deliver any material, code, or
functionality. The development, release, and timing of features or functionality remain at the sole
discretion of IBM.

https://www.ibm.com/mysupport
http://www.ibm.com/support/knowledgecenter
http://www.ibm.com/support/knowledgecenter

x IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Chapter 1. Overview
Through the integration of IBM OpenPages GRC Platform and IBM Business Process Manager, you can
access an enhanced level of GRC process automation. IBM Business Process Manager is an industry-
leading process automation system that is both scalable and highly configurable.

You can develop workflow solutions that align with your requirements. You can also configure custom
coach pages that show object information in a form that uniquely meets the needs of the user task. When
a business process calls a coach page, the user must input information to continue the business process.
Additionally, you can use a set of integration toolkits, which align with IBM OpenPages GRC Platform APIs
and leverage existing data and configuration.

Users can launch and work on GRC processes by working with the embedded IBM BPM Process Portal on
the Home page. When users click the Process Portal tab, the system opens the native BPM Process
Portal.

You need to have a solid understanding of IBM Business Process Manager before you begin the
integration with IBM OpenPages GRC Platform.

To find information about IBM Business Process Manager, access http://www.ibm.com/support/
knowledgecenter/SSFPJS_8.5.7/com.ibm.wbpm.main.doc/kc-homepage-bpm.html (http://
www.ibm.com/support/knowledgecenter/SSFPJS_8.5.7/com.ibm.wbpm.main.doc/kc-homepage-
bpm.html).

http://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.7/com.ibm.wbpm.main.doc/kc-homepage-bpm.html
http://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.7/com.ibm.wbpm.main.doc/kc-homepage-bpm.html

2 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Chapter 2. OpenPages Platform Toolkit
The OpenPages Platform Toolkit is used to integrate parts of the IBM OpenPages GRC Platform and the
IBM Business Process Manager.

Resources in the OpenPages Platform Toolkit
The OpenPages Platform Toolkit contains resources that are used to define business processes and build
interaction between business processes and OpenPages. Using a dependency, you can link a process
application to the OpenPages Platform Toolkit.

The OpenPages Platform Toolkit is a standard toolkit that is updated by OpenPages releases and fix
packs. Do not edit the toolkit artifacts directly.

The resources available in the OpenPages Platform Toolkit are illustrated in the following graphic.

Figure 1. OpenPages Platform Toolkit

Ajax service

Ajax services interact with OpenPages from within coach views. An Ajax service in a coach view can make
a REST API call to OpenPages. For example, you can use the Ajax service when you want a user to
populate a drop-down control with values from OpenPages. For more information, see http://
www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.wle.editor.doc/develop/topics/
tajaxservice.html (http://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/
com.ibm.wbpm.wle.editor.doc/develop/topics/tajaxservice.html).

Deployment service

The Deployment service adds calls and scripts that complete specific functions. It does this when a
process application is deployed on a server in another environment.

Business objects

The integration services use the following business objects as input and output: OPCurrency,
OPCurrencyField, OPEnumValue, OPFieldDefinition, and OPObject. A business object is a custom type
that can be used as a variable for business data. This data must be available to the process and its
services. Variables capture the business data that is used by activities in a business process definition, or
by steps in services such as integration or human services.

http://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.wle.editor.doc/develop/topics/tajaxservice.html
http://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.wle.editor.doc/develop/topics/tajaxservice.html
http://www.ibm.com/support/knowledgecenter/SSFPJS_8.5.0/com.ibm.wbpm.wle.editor.doc/develop/topics/tajaxservice.html

Client-side human services
A human service is a component that creates a task for a user to work on. Human services provide the
inclusion of coach components, which are the descriptions of screen data to be presented to users and
data to be retrieved from users. Client-side human services include OPObjectSelection, which is used
when users select an OpenPages object to work with in a business process. For an example of how to use
OPObjectSelection, see “Using OPObjectSelection client-side human service ” on page 17. The Process
Portal tab on the OpenPages Home page is also a client-side human service. Users access it to launch
business processes, claim tasks, and work on tasks.

Integration services

Integration services interact with OpenPages data. The services are designed and built to support
OpenPages. For more information, see Chapter 4, “OpenPages integration services,” on page 7.

Resource bundle groups

Resource bundle groups include the following:

• OPPlatformTexts is used by OPObjectSelection for UI-elements that are associated with OpenPages
objects. Do not use OPPlatformTexts in your business processes.

• OPSystemFieldLabels is used by OPObjectSelection for field labels that are associated with OpenPages
objects. Do not use OPSystemFieldLabels in your business processes.

Server file and WebFile

The server file and WebFile are automatically generated. The server file contains Java™ code that is
deployed in the toolkit. WebFile contains image icons and stylesheets that are used when you design
coach pages.

4 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Chapter 3. OpenPages Solutions Toolkit
The OpenPages Solutions Toolkit is used to integrate parts of the IBM OpenPages GRC Platform and the
IBM Business Process Manager.

Resources in the OpenPages Solutions Toolkit
The OpenPages Solutions Toolkit contains resources that give you access to business objects based on
your unique object schema. You can access all business objects, their fields, and the relationships
between fields. You can also access field labels, locales, and application text in multiple languages. The
resources are used to build coach screens and workflow activities that give you access to the object data
in IBM OpenPages GRC Platform. Using a dependency, you can link a process application to the
OpenPages Solutions Toolkit.

The OpenPages Solutions Toolkit is generated based on your object schema. Therefore, it is unique for
each OpenPages customer. You must regenerate it if you change the data model. Similar to the
OpenPages Platform Toolkit, the OpenPages Solution Toolkit can be updated by OpenPages releases and
fix packs. Do not edit the toolkit artifacts directly.

The resources available in the OpenPages Solutions Toolkit are illustrated in the following graphic.

Figure 2. OpenPages Solutions Toolkit

Custom business objects based on client schema

OpenPages business objects that are specific to each customer begin with OP. For example, the
OpenPages SOXRisk object type is named OPSOXRisk in IBM BPM. Variables capture the business data
that is used by activities in a business process definition, or by steps in services such as integration or
human services.

Object and field labels

Resource bundle groups give you access to copies of object texts and application texts in OpenPages. You
can access resources in the process definitions to control what language to display in coach views for
object and field labels.

• Use OPObjectLabels to access localized labels for object types. Both singular and plural labels are
available.

• Use OPFieldLabels to access localized labels for object fields.

OpenPages data is specific to each customer.

Application text

Application text is specific to each customer. You can access this resource in process definitions to
control what language to display in coach views for application text.

Use the OPAppText* resources to access localized application text by category. By default, the toolkit
contains OPAppTextLabels, OPAppTextTitles, OPAppTextValidationMessages, and OPAppTextCustom.
You can optionally copy more categories. Use the -appTextCategories option with the op-bpm-
tool.jar command line tool.

For an example of how to use these resources, see “Using localization resources” on page 35.

6 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Chapter 4. OpenPages integration services
The OpenPages Platform Toolkit contains integration services that you can use in business processes to
access data in OpenPages.

Input and output parameters are required unless noted otherwise.

OPAssociateChildren
OPAssociateChildren is used to associate children with a specified object.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – object ID or full path to the parent object. String.
children – list of object IDs or full paths to associate. String list.

Output parameters
none

OPAssociateParents
OPAssociateParents is used to associate parents with a specified object.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – an object ID or full path to the child object. String.
parents – a list of object IDs or full paths to associate. String list.

Output parameters
none

OPCopyObjects

OPCopyObjects is used to copy one or more objects to a specific target parent.

You can copy an unlimited number of objects with OPCopyObject. However, if you copy a large number of
objects, the operation can fail with an HTTP(S) read timeout. You can avoid this problem if you use a
script to break the request into multiple REST API calls.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
targetParentId – an object ID or full path to the target parent object. String.
sourceObjectIds – a list of source object IDs or full paths. String list.
includesChildren – a flag used to include children of source objects or copy source objects.
Boolean.
conflictBehavior – a parameter that determines conflict behavior. Optional. String. Can be one of
the following values:

• CREATECOPYOF – creates a copy and adds a prefix to the name of the copy in the target location.
The prefix is Copy of for the first instance of a conflict, or Copy (n) of for the nth instance.

• OVERWRITE – overwrites the GRC object at the destination with the GRC object from the source.

• USEEXISTING – keeps the GRC object at the destination and associates it with the source objects
that are being moved.

• ERROR – prompts an OpenPagesException if a conflict exists.

childrenTypesToCopy – object type IDs or names to copy. Optional. String list.
Output parameters

copiedObjects – a list of copied objects.

OPCreateObject

OPCreateObject is used to create an object based on specified field values.

For an example of how to use OPCreateObject, see “Using OPObjectSelection client-side human service ”
on page 17.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
inObject – the object to create. The type of the object must be one of business objects from the
OpenPages Solution Toolkit. Any.

Output parameters
outObject – a created object with an ID. The type of the object is the same as the inObject.

OPDeleteObject
OPDeleteObject is used to delete an object that is specified by the objectId.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – an object ID or full path to the object to be deleted. String.

Output parameters
none

OPDissociateChildren
OPDissociateChildren is used to dissociate children from a specified object.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – an object ID or full path to the parent object. String.
children – a list of object IDs or full paths to dissociate. String list.

Output parameters
none

OPDissociateParents
OPDissociateParents is used to dissociate parents from a specified object.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – an object ID or full path to the child object. String.
parents – a list of object IDs or full paths to dissociate. String list.

8 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Output parameters
none

OPExecuteReportFragment

OPExecuteReportFragment is used to execute a given report fragment and return a value that is an HTML
fragment.

Ensure that the HTML fragment does not contain links to icons or image files. They are not rendered in
coach pages because the links are resolved within IBM Business Process Manager rather than Cognos® or
IBM OpenPages GRC Platform.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – an object ID or full path to the object. String.
field – a field name in the bundle-name:field-name format. String.

Output parameters
fragment – an executed report fragment value (an HTML fragment).

OPGenericObjectQuery
OPGenericObjectQuery is used to issue a generic GRC object query to the IBM OpenPages GRC Platform
REST API. This service is highly configurable and customizable. For more information about the query
statement syntax, see the IBM OpenPages GRC REST API Reference Guide.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
queryStatement – a Query SELECT statement using OpenPages API Query Syntax, for example,
SELECT [Resource ID], [Name] FROM [SOXIssue]. String.
isPrimary – if joining multiple types in a query, set to true to honor primary associations between
parents and children or set to false to return all associations. Boolean.
isCaseInsensitive – if comparing String values in a query, set to true to ignore differences in
case. Default is false. Boolean.
start – starting index for results, 0 for the first result. Use to retrieve a given number of results
rather than an entire list. For example, if start is 0 and pageSize is 500, the service returns up to
the first 500 results (0-499) that are found by the query. If start is 500 and pageSize is still 500,
the next 500 results are returned (500-999). Using start can improve performance for large data
sets. Integer.
pageSize – the maximum number of query results that the request to REST API can return. Specify
pageSize as 0 to return all query results that match the query filters. Integer.
returnType – if specified, the returnType is the business object type that will be returned by the
query. If not specified, an OPObject business object is returned. If the query provided does not return
columns for the business object, the behavior is unexpected. Optional. String.

Output parameters
returnObjects – a list of GRC objects that are returned for the query of the specified returnType,
or OPObject if not specified. The queryStatement must select fields on the GRC object that match the
fields in the specified returnType. Any fields in the returnType GRC object that are not part of
your queryStatement's SELECT clause will be null.

Chapter 4. OpenPages integration services 9

OPGetBaseURL

OPGetBaseURL is used to retrieve the base URL for the OpenPages server, for example, http://
opserver:port/. You can use this service, for example, to construct a URL to a Detail View page.

For an example of how to use OpGetBaseURL, see “Sending email notifications ” on page 49.

Input parameters
None

Output parameters
baseURL – the base URL for the OpenPages server.

OPGetChildAssociations
OPGetChildAssociations is used to retrieve a list of child associations.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
ObjectId – an object ID or full path to the parent object. String.

Output parameters
children – a list of OPObject types. It populates three fields of the OPObject: id, path, and
typeDefinitionId. Other parameters of OPObject type are null.

OPGetEnumeratedValues

OPGetEnumeratedValues is used to retrieve a list of enumerated values (drop down values) for an
enumerated field. When the dependency picklist is configured, the service caller passes the
controllingValue argument to retrieve available enumerated values.

For an example of how to use OPGetEnumeratedValues, see “Adding enumerated fields with a dependent
picklist to a coach page” on page 21.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
ObjectTypeName – the name of the object type, for example, SOXBusEntity. String.
fieldName – the name of the field in the bundle-name:field-name format, example, OPSS-
BusEnt:Entity Type. String.
ControllingValue – the value of the controlling field used when the dependency picklist is
configured. Optional. String.

Output parameters
outObject – a list of enumerated values. The type is a list of values of OPEnumValue.

OPGetObject
OPGetObject is used to return business object information from a GRC object.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
ObjectId – an object ID or full path to the object. String.
computeReportFields – a flag used to retrieve computed field values or leave them null. Boolean.

10 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Fields – a list of field names to retrieve in the bundle-name:field-name format. Optional. String
list.

Output parameters
outObject – a retrieved OpenPages object. The type is determined based on the object type to
retrieve. It is one of the business objects defined in the OpenPages Solution Toolkit.

OPGetParentAssociations
OPGetParentAssociations is used to get a list of parent associations.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – an object ID or full path to the child object. String.

Output parameters
parents – a list of OPObject types. Three fields are populated in the OPObject: id, path, and
typeDefinitionId. Other parameters of OPObject type are null.

OPHierarchicalAssigneeQuery

OPHierarchicalAssigneeQuery is used in special cases to make a hierarchical query for child objects under
a specific parent instance. This method allows for a single field to be returned along with system fields for
the child object type. The field is specified by the assigneeField parameter to issue a generic GRC
object query to the IBM OpenPages GRC Platform REST API.

For an example of how to use OPHierarchicalAssigneeQuery, see “Defining basic hierarchical processes”
on page 37.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
parentType – the parent object type name to query. String.
parentId – the ID of the parent instance. String.
childType – the child object type name to query and return. String.
assigneeField – a field name that identifies a field on the child object type to be returned in the
results. You can qualify the field using the field_group:field naming convention. String.
isPrimary – if joining multiple types in a query, set to true to honor primary associations between
parents and children, or set to false to return all associations. Boolean.
isCaseInsensitive – if comparing string values in a query, set to true to ignore differences in
case. The default is false. Boolean.
filters – used to apply additional filter conditions to the query. Must be specified in valid query API
syntax: [Object Type].[Field Group:Field Name]. The filters must be for fields on either the
parent type or child type for the query. Null is passed if no additional filters are needed. String.
start – starting index for results, 0 for the first result. Use to retrieve a given number of results
rather than an entire list. For example, if start is 0 and pageSize is 500, the service returns up to
the first 500 results (0-499) that are found by the query. If start is 500 and pageSize is still 500,
the next 500 results are returned (500-999). Using start can improve performance for large data
sets. Integer.
pageSize – the maximum number of query results that the request to REST API can return. Specify
pageSize as 0 to return all query results that match the query filters. Integer.
isDirect – used to specify whether the query checks the entire hierarchy for the child type or
immediate children. Boolean.

Chapter 4. OpenPages integration services 11

Output parameters
returnObjects – a list of GRC objects that are returned as children of the parent, including the field
specified by the assigneeField.

OPHierarchicalQuery

OPHierarchicalQuery is used to make a hierarchical query for child objects under a specific parent
instance.

For an example of how to use OPHierarchicalQuery, see “Retrieving a list of child objects” on page 48.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
parentType – the parent object type name to query. String.
parentId – the ID of the parent instance. String.
childType – the child object type name to query and return. String.
isPrimary – if joining multiple types in a query, set to true to honor primary associations between
parents and children, or set to false to return all associations. Boolean.
isCaseInsensitive – if comparing string values in a query, set to true to ignore differences in
case. Default is false. Boolean.
filters – used to apply additional filter conditions to the query. Must be specified in valid query API
syntax: [Object Type].[Field Group:Field Name]. The filters must be for fields on either the
parent type or child type for the query. Null is passed if no additional filters are needed. String.
fields – if specified, is an explicit list of fields that will be returned by the query. Fields must be
comma-delimited and specified in the field_group:field format. Must be specified in valid query
API syntax and will be used as the SELECT clause of the query statement in place of the defaults.
Specifying only fields from the child type is allowed. If not specified, only system fields from the child
type are returned by default. Optional. String.
fields – if specified, is an explicit list of fields that will be returned by the query. Fields must be
comma-delimited and either specified in the [return_type].[field_group:field] format or
with one of the following special keywords: Id for only the resource ID or System Fields for all the
system fields from the child type. Must be specified in valid query API syntax and will be used as the
SELECT clause of the query statement in place of the defaults. Specifying only fields from the child
type is allowed. If not specified, only the resource ID system field from the child type is returned by
default. Optional. String.
start – starting index for results, 0 for the first result. Use to retrieve a given number of results
rather than an entire list. For example, if start is 0 and pageSize is 500, the service returns up to
the first 500 results (0-499) that are found by the query. If start is 500 and pageSize is still 500,
the next 500 results are returned (500-999). Using start can improve performance for large data
sets. Integer.
pageSize – the maximum number of query results that the request to REST API can return. Specify
pageSize as 0 to return all query results that match the query filters. Integer.
isDirect – used to specify whether the query checks the entire hierarchy for the child type or
immediate children. Boolean.

Output parameters
returnObjects – a list of GRC objects that are returned as children of the parent.

OPLaunchChildProcesses

12 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

OPLaunchChildProcesses is used to launch child processes in a hierarchical process.

For an example of how to use OPLaunchChildProcesses, see “Defining advanced hierarchical processes ”
on page 41.

Input parameters
ProcessName – name of the business process definition to launch. String.
InputValues – each entry in the list is passed as an input value to a new process that is launched.
The size of the list determines how many processes are launched. The InputValues map matches the
Input type variables of the process that is being launched. The key in the map is the Input variable
name and the value in the map is the value passed to the variable. Map list.
Delay – time in milliseconds that the service pauses after launching a process. Use a longer delay to
avoid performance issues. Integer.
AddDependency – adds a dependency from the launched child process to the parent process.
Making the parent dependent on the launched child processes indicates to IBM Business Process
Manager that there is a relationship between the two processes. The parent process cannot complete
until all children processes are completed. Boolean.

Terminating the parent process also terminates all child processes.

Output parameters
ChildPIDs – list of the child process instances' IDs. String list.

OPLockObject

OPLockObject is used to lock an object that is specified by the objectId.

For an example of how to use OPLockObject, see “Locking and unlocking objects” on page 49.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
ObjectId – an object ID or full path to the object. String.

Output parameters
none

OPMakeAddNewLink

OPMakeAddNewLink is used to make an HTML hyperlink tag to open the Add New wizard in OpenPages.
You can add a specific new object type and optional parameters for parent, parent type, and view name.
The link opens in a new window.

For an example of how to use OPMakeAddNewLink, see “Adding file attachments to a coach page” on
page 28.

Input parameters
newObjectType – the name of the object type to add. String.
parentId – the resource ID for the default selected parent in the Add New wizard. Optional. String.
parentType – the object type of the default parent. Optional. String.
viewName – a specific view for the new object type. Optional. String.
linkText – the text to display for the link. String.

Output parameters
addNewLink – the HTML code used to create a link to open the Add New wizard for the object. String.

Chapter 4. OpenPages integration services 13

OPMakeDetailLink

OPMakeDetailLink is used to make an HTML hyperlink tag that opens an object's Detail View in
OpenPages. You can use an optional parameter provide a profile view name.

For an example of how to use OPMakeDetailLink, see “Adding a link to an OpenPages Detail page on a
coach page ” on page 25.

Input parameters
fileId – the resource ID of the linked object in OpenPages. String.
viewName – a specific view for the object type. If not specified, the default is the detail view.
Optional. String.
rootOPAppContext – the OpenPages root context path, for example, openpages
linkText – the text to display for the link. String.

Output parameters
detailViewLink – the HTML code used to open the Detail View for the object. String.

OPMakeDocumentLink

OPMakeDocumentLink is used to make an HTML hyperlink tag to download a file directly from
OpenPages.

For more information about task-oriented hyperlinks, see https://www.ibm.com/support/
knowledgecenter/SSFUEU_8.0.0/op_grc_admin/c_adm_task_oriented_hyperlinking.html.

For an example of how to use OPMakeDocumentLink, see “Downloading file attachments on coach
pages” on page 30.

Input parameters
fileId – the resourceId of the document file. Must be an object type of SOXDocument. String.
rootOPAppContext – the OpenPages root context path, for example, openpages
linkText – the text to display for the link. String.

Output parameters
documentLink – the HTML code used to create a link to download a file. String.

OPMoveObjects

OPMoveObjects is used to move one or more objects to a specific target parent.

You can move an unlimited number of objects with OPMoveObject. However, if you move a large number
of objects, the operation can fail with an HTTP(S) read timeout. You can avoid this problem if you use a
script to break the request into multiple REST API calls.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
targetParentId – the object ID or full path to the target parent object. String.
sourceObjectIds – a list of source object IDs or full paths. String list.
conflictBehavior – a parameter that determines conflict behavior. Optional. String. Can be one of
the following values:

• OVERWRITE – overwrites the GRC object at the destination with the GRCObject from the source.

14 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

https://www.ibm.com/support/knowledgecenter/SSFUEU_8.0.0/op_grc_admin/c_adm_task_oriented_hyperlinking.html
https://www.ibm.com/support/knowledgecenter/SSFUEU_8.0.0/op_grc_admin/c_adm_task_oriented_hyperlinking.html

• USEEXISTING – keeps the GRC object at the destination and associates it with the source objects
that are being moved.

• ERROR – prompts an OpenPagesException if a conflict exists.

childrenTypesToMove – object type IDs or names to move. Optional. String list.
Output parameters

None

OPPerformRESTGet
OPPerformRESTGet is a generic integration service that you can use to access IBM OpenPages GRC
Platform REST APIs. You can use it if no integration service meets your requirements but a REST API
does.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
requestPath – IBM OpenPages GRC Platform REST API path relative to <OpenPages
application URL>/grc/api.

You can add parameters to the end of the URL. For example, if requestPath is the following:

/contents/12345/permissions/effective?user=orm

The effective access control is retrieved for the orm user on the object whose ID is 12345.

Output parameters
response – raw string, typically in REST API JSON format, from the REST API invocation. You can
use IBM Business Process Manager scripting to extract data from the raw string. Example:

var jsonResult = JSON.parse(tw.local.response);
 log.info("Effective permission for a user:" + jsonResult.securityPrincipal);
 log.info("\tcanRead:" + jsonResult.canRead);
 log.info("\tcanWrite:" + jsonResult.canWrite);

OPUnlockObject

OPUnlockObject is used to unlock an object that is specified by the objectId.

For an example of how to use OPUnlockObject, see “Locking and unlocking objects” on page 49.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
ObjectId – the object ID or full path to the object. String.

Output parameters
none

OPUpdateObject
OPUpdateObject is used to update an object based on specified field values.

Input parameters
systemTask – a flag used to run this operation as a system account or current user. Boolean.
inObject – the object to update. The type of the object must be one of the business objects from the
OpenPages Solution Toolkit. Any.

Output parameters
outObject – the updated object. The type of the object is the same as inObject.

Chapter 4. OpenPages integration services 15

Team Filter by Object Field
Team Filter by Object Field is a Team Filter Service that is used to assign tasks to a user whose name is in
an object field, for example, Control Owner or Risk Owner. You can use it for user groups and for multi-
select users and groups.

Input parameters
originalTeam – a parameter reserved for a Team Filter Service. Team.
systemTask – a flag used to run this operation as a system account or current user. Boolean.
objectId – the object ID or full path to the object. String.
field – field name in the bundle-name:field-name format. String.
expandGroups – flag to resolve group memberships recursively and to include only users in the
filtered team. This can impact system performance if the group contains many users and subgroups.
Because groups from OpenPages might not be available in IBM Business Process Manager, set to
true in the LDAP configured environment. Boolean.

Output parameters
filteredTeam – a parameter that is reserved for a Team Filter Service. Team.

16 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Chapter 5. Process authoring examples
Process authors can use the examples in this document to find solutions to common problems that occur
when implementing IBM Business Process Manager with IBM OpenPages GRC Platform.

Using OPObjectSelection client-side human service

You can use the OPObjectSelection client-side human service to give users the ability to select an
OpenPages object in a business process.

The OPObjectSelection client-side human service displays the following user interface to a user:

The title of the interface is the object type. Otherwise, the interface is the same regardless of what object
type is used.

A user types a value and clicks the search icon. The search returns a list of objects where a match is found
in the name or description. Users can then select an object or cancel. The object that is selected is passed
back to the business process and the process continues.

In the following example, OPObjectSelection is inserted as the first step in a client-side human service:

The object type that is used in OPObjectSelection is defined in a variable or an earlier task, depending on
how the business process is defined.

In addition, you can use OPObjectSelection as a model to design your own object selection client-side
human services.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.

3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Drag Nested client-side human service from the palette onto the canvas.
7. On the Properties pane, select the Implementation tab.
8. In Nest a client-side human service, select OPObjectSelection.

9. Select the Data Mapping tab, and define the input and output mapping.

10. You can now define the overall client-side human service.

Assigning a process task based on a field value
You can assign a process task to a user based on the value of a specified field. In this example, you create
a new activity in a process and assign that activity to an object's primary owner.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Create a process.
6. Drag an Activity from the palette onto the canvas.
7. On the Properties pane, select the Assignments tab.

a) In Assign to, select Team.
b) In Team, select All Users.
c) In Team Filter Service, select Team Filter by Object Field.
d) Specify Team Filter Service Input Mapping as:

18 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

• In systemTask, define whether the task can access OpenPages as system account or the current
account.

• In objectId, enter the ID of the object. It can be a local variable.
• In field, enter a field definition string. It can be a local variable.

8. Save the process.

Adding rich text fields to a coach page

If you define coach pages that have rich text fields, different formatting behavior occurs in the OpenPages
rich text editor (CKEditor) when compared to the IBM BPM rich text editor. In this example, you add a rich
text field to a coach page.

For rich text fields that you define on a coach page with the BPM editor, not all formatting is preserved in
the CKEditor. After a user enters text in a rich text field on a coach page, the field appears in read-only
mode on a Detail page in OpenPages. The field displays with the formatting that the user specified on the
coach page. However, if the user edits the object by using the CKEditor, the following formatting is
removed:

• font size
• font type
• paragraph alignment (left, right, center)
• style attributes on indent tags that use <blockquote>

Similarly, for rich text fields that you define in OpenPages with the CKEditor, not all formatting is
preserved in the BPM editor. After a user enters text in a rich text field in OpenPages, the field can be
viewed on a coach page. Most of the formatting is preserved when the text is displayed on a coach page,
with the following exceptions:

• emoticons
• paragraph alignment (justified)
• document bookmarks
• insert tables
• font colors
• styles for CKEditor-specific CSS classes

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

Chapter 5. Process authoring examples 19

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Coaches tab and select a template.
7. Drag the Text Area view from the palette onto the canvas.
8. In the Properties pane, click the Configuration tab.
9. Set Text area type to Rich Text.

10. Save the coach page.

Adding single or multiple enumerated fields to a coach page
You can add single or multiple enumerated fields to a coach page. In this example, you create a new
client-side human service and define a single enumerated field for a coach page.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Coaches tab and select a template.
7. Drag the Single Select view or the Multiple Select view from the palette onto the canvas.
8. In the Properties pane, specify a label and bind the control to a variable. In this example, the

variable is bound to an Incident object's OPSS-Inc field group, Criticality field. Ensure that the
bound variable type is OPEnumValue.

9. Click the Configuration tab and define the following fields:
a) In Selection service, select the OPAjaxGetEnumValues integration service from the OpenPages

Platform Toolkit.
b) In Selection service input text, specify an object type, field group, and field in the following

format: <object type>:<field group>:<field>.
c) In Display name property, select localizationLabel.
d) Select Disable sorting to maintain the order that is configured in OpenPages.

20 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

10. Save the coach page.

Adding enumerated fields with a dependent picklist to a coach page
You can add enumerated fields with dependent picklists to a coach page. In this example, you create a
new client-side human service and define an enumerated field with a dependent picklist for a coach page.

Procedure

1. Open the Process Designer desktop editor.
2. Open the Process Designer.
3. Add dependencies to the OpenPages toolkits.

a) Click Toolkits and select OpenPages Platform.
b) Click Toolkits and select OpenPages Solutions.

4. Click New beside User Interface > Ajax Service, and enter a name for your service.
5. In the Properties pane, add the text input variable and the results output variable. The variable

name and variable type must match.

6. Click the Diagram tab and drag a Nested Service from the palette onto the canvas.
7. In the Properties pane, click the Implementation tab, and select the OPGetEnumeratedValues

service from the OpenPages Platform Toolkit.

Chapter 5. Process authoring examples 21

8. Click the Data Mapping pane. Specify the following parameters:
a) In objectTypeName, enter the object type of the enumerated field that is being picked.
b) In fieldName, enter the object field group and field of the enumerated field that is being picked.
c) In controllingValue, enter tw.local.text.
d) In outObject, enter tw.local.results.

9. Save the Ajax service.
10. Open the Process Designer web editor.
11. Click New beside User Interface > Client-Side Human Service, and enter a name for your user

interface.
12. Click the Coaches tab and select a template.
13. Drag the Single Select view from the palette onto the canvas.
14. In the Properties pane, specify a label and bind the control to an OPEnumValue variable.
15. Click the Configuration tab and define the following fields:

a) In Selection service, select the service that you created.
b) In Selection service input text, enter the name field of the controlling enumerated field.
c) In Display name property, select localizedLabel.
d) Select the Disable sorting checkbox to maintain the order that is configured on the OpenPages

side.

Figure 3. Defining the fields on the Configuration tab
16. Save the coach service.

22 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Adding computed fields to a coach page

You can add computed fields to a coach page. In this example, you create a new client-side human
service and define a computed field for a coach page.

The business object type of computed fields is String. The value normally contains raw HTML tags.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Coaches tab and select a template.
7. Click Views > Advanced and drag Custom HTML from the palette onto the canvas.

8. In the Properties pane, select the HTML tab.
9. Select Variable.

10. Specify a label and bind the control to a variable. In this example, the variable is bound to Scenario
Analysis' OPSS-ScenAn field group, Buckets Overview field.

11. Save the coach page.

Adding Owner fields to a coach page

Chapter 5. Process authoring examples 23

You can add Owner fields to a coach page. In this example you create a new client-side human service,
define a coach page, and add an Owner field to it.

Owner fields that use the multiple user selector display type are displayed on a coach page as
$;<value>$;. For example, the value John Smith for a Primary Owner is displayed on a coach page as
$;John Smith$;. You must programmatically remove $;. Owner fields that use the single user selector
display type do not display $;.

In this example, assume that a client-side human service has an Owner field value in a variable named
OwnerField. It contains a value of $;OpenPagesAdministrator$;itg$;fcm$;. Before you display
the value on a coach page, you must convert it to a more user readable format. After the value has been
changed by a coach page, it must be converted back to the OpenPages format.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Variables tab and add an OutputOwnerField private variable of type String.
7. Click the Diagram tab.
8. Drag a Client-side script from the palette onto the canvas. Place it after the Start. Connect the

arrows link from the Start node to the new Client-side script node, and connect the Client-side script
node to the Coach.

9. Drag a second Client-side script node from the palette onto the canvas. Place it after the Coach and
connect the arrows. Give all the nodes descriptive names.

10. Click the first Client-Side Script node.
a) In the Properties pane, click Script.
b) Enter the script code. The following code converts the value in the OwnerField variable from the

OpenPages format to the display format and returns it in OutputOwnerField.

if(tw.local.OwnerField !== null){
//split based on the OP delimiter for multi-user selectors
 var names = tw.local.OwnerField.split("$;");

 //array has a trailing and leading empty string
 //due to the extra delimiters in OP value

24 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

 names.pop();
 names.shift();

 //use JS arrays.join() to concatenate the array of names
 //into comma-delimited list format
 tw.local.OutputOwnerField = names.join(",");
}

11. Click the second Client-Side Script node.
a) In the Properties pane, click Script.
b) Enter the script code. The following code reverses the value in the OutputOwnerField variable

to the OpenPages format. It returns it in the OutputOwner variable, which you can then save back
to the original OpenPages object.

if(tw.local.OutputOwnerField !== null){

 var names = tw.local.OutputOwnerField.split(",");

 //array needs trailing and leading empty string
 //due to the extra delimiters in OP value

 names.push("");

 names.unshift("");

 //use JS arrays.join() to concatenate the array of names
 //into OP multi-user list format

 tw.local.OwnerField = names.join("$;");

}

12. Click the Coaches tab and select a template.
a) Drag a View, such as the Text view, from the palette onto the canvas.
b) On the Properties pane, next to Label type Owner Field.
c) Next to Binding, click Select and choose the tw.local.OutputOwnerField variable.

13. Save the coach page.
14. Run the client-side human service. The coach page displays a text field that contains user names in

comma-delimited format.

15. If you click OK, it returns the value in the text field. The second script converts the value to the
OpenPages format. Your process can then, for example, update the object’s owner field with the new
value.

Note: The code in this example does not validate names that users enter. Users must enter multiple
names as comma-delimited values.

Adding a link to an OpenPages Detail page on a coach page
You can add a link to an OpenPages Detail page on a coach page. In this example, you create a new
client-side human service and define a link on a coach page that opens an OpenPages Detail page. For

Chapter 5. Process authoring examples 25

testing, you enter the value of an existing object’s resource ID in OpenPages. In a real implementation,
you specify the ID of the object you want to link to with an input variable on the client-side human service.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface, such as, Risk Detail Link.

6. Click the Variables tab, and add a DetailLink private variable of type String.
7. In Input, add a RiskId input variable of type String. Select Has default. For testing, enter the value

of an existing Risk object’s resource ID in OpenPages.
8. Click the Diagram tab.
9. Drag a Service from the palette onto the canvas. Place it after the Start. Connect the arrows link from

the Start node to the new Service node, and connect the Service node to the Coach. Give the nodes
descriptive names.

10. Click the service node, and select the Implementation pane.
11. In the Behavior section, select Call a Service and select the OPMakeDetailLink integration service

from the OpenPages Platform Toolkit.
12. Select the Data Mapping pane and specify the following parameters:

a) In fileId, select the RiskId input variable that is named tw.local.RiskId.
b) In linkText, enter See Details in OpenPages.
c) Optionally, in viewName, enter the name of a profile view for the object type. If left blank, the

default view for the user’s profile is used.
d) In Output Mapping, enter tw.local.DetailLink for documentLink.

13. Save the changes to the service
14. Click the Coaches tab and select a template.
15. Click Views > Advanced and drag a Custom HTML from the palette onto the canvas.

26 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

16. In the Properties pane, select the HTML tab. Click Variable and select DetailLink private variable.

Alternatively, you can use an Output Text view rather than a Custom HTML view in the coach page.
Select the Output Text, under Binding select the DownloadLink|DetailLink private variable.
Click the Properties pane, and select the Configuration tab. Change the setting for Disable HTML
encoding from cleared to selected.

17. Save the coach page.

Note: When a user, who is not logged in, clicks the link from the coach page, that user is prompted to
log in to OpenPages.

Adding a link to a Cognos report on a coach page
You can add a link to a Cognos report on a coach page. In this example, you create a new client-side
human service and define a link on a coach page that opens a Cognos report.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.

Chapter 5. Process authoring examples 27

4. Add dependencies to the OpenPages toolkits.
a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Variables tab, and add a baseURL private variable of type String.
7. Click the Coaches tab and select a template.
8. Click Views > Advanced and drag Custom HTML from the palette onto the canvas.

9. In the Properties pane, select the HTML tab and add an HTML snippet:

The snippet can be:

<a href='#' onclick='window.open("{{tw.local.baseURL}}/my.report.list.post.do?
submitAction=preview&label=Current Reporting Period&reportId=899",
"Title","toolbars=no,status=yes,menubars=no")'>Audit Plan Report

BPM substitutes the text in double brackets {{}} with the variable value.
10. You can substitute the report ID, 899 in this example, with the report you want to run. The report ID

can be found in the URL when you run the report from OpenPages system. The baseURL variable is
the OpenPages application URL, and it is redirected to the Cognos report.

11. Save the coach page.

Adding file attachments to a coach page
You can add a link to open a file attachment on a coach page. In this example, you create a new client-
side human service and define a single link to open the Add New wizard to upload a new file to
OpenPages. File attachments are stored on the OpenPages server.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

28 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface, such as, Add New Document.

6. Click the Variables tab, and add an AddNewLink private variable of type String.
7. Click the Diagram tab.
8. Drag a Service from the palette onto the canvas. Place it after the Start node. Connect the arrows link

from the Start node to the new Service node, and connect the Service node to the Coach. Give the
nodes descriptive names.

9. Click the service node, and select the Implementation pane.
10. In the Behavior section, select Call a Service and then select the OPMakeAddNewLink integration

service from the OpenPages Platform Toolkit.
11. Select the Data Mapping pane, and specify the following parameters:

a) In newObjectType, enter SOXDocument, which is the object type for file attachments.
b) In linkText, enter Add New Document.
c) Optionally, specify the behavior of the Add New wizard:

• In parentId, enter the resource ID for the default parent that will be preselected as the primary
parent in the Add New wizard.

• In parentType, select the object type of the default parent, such as, SOXRisk.
• In viewName, provide a creation view for the new object type.

d) In Output Mapping, enter tw.local.AddNewLink for addNewLink.
12. Save the changes to the service.
13. Click the Coaches tab, and select a template.
14. Click Views > Advanced, and drag a Custom HTML from the palette onto the canvas.

Chapter 5. Process authoring examples 29

15. In the Properties pane, select the HTML tab, click Variable, and select the AddNewLink private
variable.

16. Save the coach page.

Note: When a user, who is not logged in, clicks the link from the coach page, that user is prompted to
log in to OpenPages. After the user saves a new File attachment (or other object type) with the Add
New wizard, the wizard returns to the initial Add New page. The user can add another object of the
same type, and can, therefore, easily add multiple entries.

Downloading file attachments on coach pages
You can add a link to download a file attachment on a coach page. In this example, you create a new
client-side human service and define a single link to download an existing file attachment from
OpenPages. For testing, you enter the value of an existing file attachment’s resource ID in OpenPages. In
a real implementation, you specify the ID of the Document object to link to using an input variable on the
client-side human service.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.

30 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

4. Add dependencies to the OpenPages toolkits.
a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface, for example, Download Document.

6. Click the Variables tab, and add a DownloadLink private variable of type String.
7. In Input, add a DocId input variable of type String. Select Has default. For testing purposes, enter

the value of an existing File Attachment Document’s resource ID in OpenPages.
8. Click the Diagram tab.
9. Drag a Service from the palette onto the canvas. Place it after the Start. Connect the arrows link from

the Start node to the new Service node, and connect the Service node to the Coach. Give the nodes
descriptive names.

10. Click the service node and select the Implementation pane.
11. In the Behavior section, select Call a Service and select the OPMakeDocumentLink integration

service from the OpenPages Platform Toolkit.
12. Select the Data Mapping pane and specify the following parameters:

a) In fileId, select the DocId input variable that is named tw.local.DocId.
b) In linkText, enter Download File.
c) In Output Mapping, enter tw.local.DownloadLink for documentLink.

13. Save the changes to the service
14. Click the Coaches tab and select a template.
15. Click Views > Advanced, and drag Custom HTML from the palette onto the canvas.

16. In the Properties pane, select the HTML tab, click Variable, and select the DownloadLink private
variable.

Chapter 5. Process authoring examples 31

Alternatively, you can use an Output Text view rather than a Custom HTML view in the coach page.
Select the Output Text, under Binding select the DownloadLink|DetailLink private variable.
Click the Properties pane, and select the Configuration tab. Change the setting for Disable HTML
encoding from cleared to selected.

17. Save the coach page.

Note: When a user, who is not logged in, clicks the link from the coach page, that user is prompted to
log in to OpenPages. In this example, when a user clicks the link in the coach page, the user's
browser saves the file. It does not navigate to the File attachment details page. To link to the details
page, you must use the OPMakeDetailLink integration service. For more information, see
“OPMakeDetailLink” on page 14.

Creating OpenPages objects with an integration service
You can use an integration service to create OpenPages objects without user input. In this example, you
define a business process that creates an Incident object and sets the Criticality field to an enumerated
field value.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside Processes > Process, and name it Create Incident Process.
6. Click the Variables tab, add two private variables:

• incident of type OPIncident
• criticalityEnums of type OPEnumValue. Select the List attribute.

7. Click the Definition tab.
8. Drag Start and End event nodes from the palette to the System lane. You can delete the Team

swimlane. It is not used in this example.

32 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

9. Drag an Activity node from the palette onto the canvas.
a) In the Properties pane, click the General tab and name it Get Criticality Enum Values.
b) In the Properties pane, click the Implementation tab and change Type to System Task. Select

the OPGetEnumeratedValues service from the OpenPages Platform Toolkit.
10. Drag an Activity node from the palette onto the canvas.

a) In the Properties pane, click the General tab and name it Setup New Incident Variable.
b) In the Properties pane, click the Implementation tab and change Type to Script.

11. Drag an Activity node from the palette onto the canvas.
a) In the Properties pane, click the General tab and name it Create Incident.
b) In the Properties pane, click the Implementation tab and change Type to System Task. Select

the OPCreateObject service from the OpenPages Platform Toolkit.
12. Link the nodes from left to right in the order listed.

You are now ready to configure the data mapping for the activities.
13. Click the Get Criticality Enum Values node and select the Data Mapping pane.

In Input Mapping define the following fields:

• In systemTask, enter true.
• In objectTypeName, enter "Incident".
• In fieldName, enter "OPSS-Inc:Criticality".

In Output Mapping define the following field:

• In outObject, select the tw.local.criticalityEnums variable.
14. Click the Create Incident node and select the Data Mapping pane. In Input Mapping define the

following fields:

In Input Mapping define the following fields:

• In systemTask, enter true.
• In inObject, select the tw.local.incident variable.

In Output Mapping define the following field:

• In outObject, select the tw.local.incident variable.

You are now ready to enter the script.
15. Click the Setup New Incident Variable node. In the Properties pane, click the Script tab.

Enter the following example code:

tw.local.incident = new tw.object.OPIncident();
tw.local.incident.base = new tw.object.OPObject();
tw.local.incident.base.name = "BPM Test Object creation " + new java.util.Date();

Chapter 5. Process authoring examples 33

tw.local.incident.OPLC_Owners__PrimaryOwner = "OpenPagesAdministrator";
tw.local.incident.OPSS_Inc__Criticality = tw.local.criticalityEnums[0];

The script initializes the tw.local.incident variable with an empty OPIncident object. It then
sets various fields as required by the use case. Using the properties of the incident variable and its
nested properties, such as tw.local.incident.base, you can set any field on the Incident object.
In this example, the following fields are set:

• The name is set to a dynamically created value.
• The PrimaryOwner is set to OpenPagesAdministrator.
• The Criticality enumerated field is set to one of the values from the criticalityEnum variable

that was populated in the first activity.

If you know the name or ID of an enumerated value for a field, you can set it directly without using
the OPGetEnumeratedValues service. For example, enter the following code to set the Critically field
to High:

tw.local.incident.OPSS_Inc__Criticality = new tw.object.OPEnumValue();
tw.local.incident.OPSS_Inc__Criticality.name = "High";

16. Save the changes to the process.

Updating OpenPages objects with a client-side human service
You can use an integration service to update OpenPages objects in a client-side human service. Users
access a coach page, update fields on a specific object, and the changes are then reflected in OpenPages.
You use the OPUpdateObject OpenPages integration service. However, you cannot call OPUpdateObject
directly from the client-side human service because it uses an input parameter of ANY business object
type. To get around this, you can create an integration service that calls an object type that users can
update. In this example, you define an integration service that can update an object type. Then, you call
that service in a client-side human service that uses OPUpdateObject.

Procedure

1. Open the Process Designer desktop editor.
2. Open the Process Designer.

First, create an integration service that calls an object type, which is OPIncident in this example.
3. Add dependencies to the OpenPages toolkits.

a) Click Toolkits and select OpenPages Platform.
b) Click Toolkits and select OpenPages Solutions.

4. Click New beside Implementation > Integration Service, and name it OPUpdateIncident.
5. Click the Variables tab, and add two variables:

• in inObject, select OPIncident as input
• in outObject, select OPIncident as output

Define the inObject type as OPIncident rather than ANY so that you can call the variable from a
client-human service.

6. Click the Diagram tab, and drag a Nested Service node from the palette onto the canvas.
a) Name it Update Incident.
b) In the Properties pane, click the Implementation tab. Select OPUpdateObject OpenPages

integration service.
c) Click the Data Mapping tab. In Input Mapping, enter false in systemTask and
tw.local.inObject in inObject. In Output Mapping, enter tw.local.outObject in
outObject(ANY).

7. Connect the Start and End nodes before and after the OPUpdateIncident node.

34 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

8. Save the OPUpdateIncident integration service. You are now ready to define the client-side human
service.

9. Click the plus icon beside User Interface > Client-side Human Service, and give it a name, such as,
View and Edit Incident.

10. Click the Variables tab, and add two variables:

• objectId as an input variable of String type
• Incident as a private variable of OPIncident type

11. Click Diagram.
12. Drag a Service node from the palette onto the canvas. This node retrieves an Incident object.

a) In the Properties pane, click the General tab and name it Retrieve Incident.
b) In the Properties pane, click the Implementation tab and select the OPGetObject service from

the OpenPages Platform Toolkit.
c) Click the Data Mapping tab. In Input Mapping, enter false in systemTask and
tw.local.objectId in objectId. In Output Mapping, enter tw.local.incident in
outObject(ANY).

13. Edit the default coach node. Name it View and Edit Incident. Click the Coach tab and drag
controls to the coach page so that users can view and edit an Incident object.

14. Drag a Service node from the palette onto the canvas. This node updates the Incident object with the
edits the user entered.
a) In the Properties pane, click the General tab and name it Update Incident.
b) In the Properties pane, click the Implementation tab and select the OPUpdateIncident service

that you created previously.
15. Connect the nodes from left to right in the order of the steps.
16. Save the client-side human service.

Using localization resources
You can display field labels and text on a coach page in localized languages. In this example, you create a
new client-side human service and define a variable that allows fields to be displayed in localized
languages.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Variables tab.
a) Expand Localization Resources.
b) Define variables for the elements that you want to be able to display in localized languages, for

example, select OPFieldLabels or OPPlatformTexts. After you have defined the variables, you
can begin designing the coach page.

Chapter 5. Process authoring examples 35

7. Click the Coaches tab and select a template.
a) Drag a View, such as, the Single Select view, from the palette to the canvas.
b) On the Properties pane, click the icon next to Label.
c) Click Select and choose a field.

36 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Figure 4. Defining a coach page
8. Bind the control to a variable and continue defining the view.
9. Save the coach page.

Defining basic hierarchical processes

In a hierarchical process, a parent object in one process can launch child processes for objects that are
associated with the parent object.

In this example, Issue objects are retrieved from OpenPages. They can have one or more action items.
After the action items are remediated, the issue can be closed.

In this example, a small number (10 to 20) of child objects are launched. The parent process uses the
OPHierarchyAssigneeQuery integration service and a multi-instance loop type. If a larger number of child
objects are launched, you can build the processes to optimize server performance. For information, see
“Defining advanced hierarchical processes ” on page 41.

Defining a child process
Define a child process that is named Complete Action Item. This process contains a user task so that it
can be launched in parallel.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.

Chapter 5. Process authoring examples 37

4. Add dependencies to the OpenPages toolkits.
a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Create a process and name it Complete Action Item.
6. Click the Variables tab. Add an input variable and name it actionitemId.
7. Create a new swimlane or rename an existing one to Assignee.
8. Add a single Activity node to the Assignee swimlane and connect it to the Start and End nodes. Click

the Properties pane, and define the following:
a) Click Implementation and define a User Task to use the Default Human Service. You can later

replace this with a different coach UI.
b) Click Data Mapping and set up inputs for the coach UI definition. Pass the
tw.local.actionItemId variable, and map it to an Input variable for the ID used by the coach
to get the OpenPages object.

c) Click Assignments and specify that the user who is named on the action item will be the assignee.
Under Assignments, define the following fields:

• In Assign to, select Team.
• In Team, select All Users.
• In Team Filter Service, select Team Filter by Object Field.

Under Input Mapping define the following fields:

• In systemTask, type true.
• In objectId, type tw.local.actionId.
• In field, type OPSS-AI:Assignee.
• In expandGroups, type false.

9. Save the process.
10. Define a coach page. Ideally, Complete Action Item will be a custom human service (coach) that

displays information from the Action Item, which you will retrieve using the OPGetObject integration
service from the OpenPages Toolkit. This allows the Action Item assignee to get a Task that prompts
them to perform work on the Action Item that is assigned to them for the Issue.

Defining a parent process
Define a parent process that is named Issue Remediation. It determines what action items exist. It uses
the OPHierarchyAssigneeQuery integration service. You link to the Complete Action Item process and
start a process for each child Action Item under the Issue. It uses looping to complete the processes.

Procedure

1. Create a process and name it Issue Remediation.

38 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

2. Click the Variables tab.
a) Create a variable whose type is OPSOXIssue. Name it issue.
b) Create a list variable whose type is OPSOXTask. Name it actions.

3. Click the Definition tab and create three swimlanes:

• Issue Assignee
• Action Item Owners
• System

4. In the Issue Assignee swimlane, create a User Task activity node:
a) Name it Create Action Items.
b) Click Assignments.

In Assignments, define the following fields:

• In Assign to, select Team.
• In Team, select All Users.
• In Team Filter Service, select Team Filter by Object Field.

In Input Mapping, define the following fields:

• In systemTask, type true.
• In objectId, type tw.local.issue.base.id.
• In field, type OPSS-Iss:Assignee.
• In expandGroups, type false.

5. In the Issue Assignee swimlane, create another User Task activity node:
a) Name it Do Final Review.
b) Click Assignments.

In Assignments, define the following fields:

• In Assign to, select Team.
• In Team, select All Users.
• In Team Filter Service, select Team Filter by Object Field.

In Input Mapping, define the following fields:

Chapter 5. Process authoring examples 39

• In systemTask, type true.
• In objectId, type tw.local.issue.base.id.
• In field, type OPSS-Iss:Assignee.
• In expandGroups, type false.

6. In the System swimlane, create a System Task activity node:
a) Name it Get Issue.
b) Click Implementation.
c) In Implementation, select the OPGetObject integration service. Use this for testing. In a real

implementation, you could launch a Process Coach UI that allows a user to select an Issue.
7. In the System swimlane, create another System Task activity node:

a) Name it Compute Action Items.
b) Click Implementation. In Implementation, select the OPHierarchicalAssigneeQuery integration

service. This will query the children of the Action Items under Issue.
c) Click Data Mapping. In Input Mapping, define the following fields:

• In systemTask, type true.
• In parentType, type SOXIssue.
• In parentID, type tw.local.issue.base.id.
• In childType, type SOXTask.
• In assigneeField, type OPSS-AI:Assignee.
• In isPrimary, type true.
• In isCaseInsensitive, type true.
• Leave filters blank.
• Leave pageSize blank.
• In isDirect, type true.

8. In the Action Item Owners swimlane, create a Linked Process node.
a) Name it Complete Action Item.
b) Click General. In Behavior, select Multi-instance loop in Loop type.
c) In Multi-instance loop, define the following fields:

• In Start quantity, type tw.local.actions.listLength.
• In Ordering, select Run in parallel.

If you select Run in parallel, each child process is launched immediately and simultaneously.
This can lead to scalability issues since IBM BPM does not limit the child execution. If the child
process is performing only System tasks, for example, creating new objects in OpenPages, you
might want to instead select Ordering with Run Sequential to minimize performance load. If the
child process has tasks that must be run in parallel and there is the potential for a large number
of child processes (more than 10-20), see “Defining advanced hierarchical processes ” on page
41 for an alternative design.

• In Flow condition, select Wait for all to finish (All).
d) Click Implementation. In Implementation, select Linked Process in Type.
e) Click Data Mapping. In Input Mapping, define the following field:

• In actionItemId, type tw.local.actions[tw.system.step.counter].base.id.
9. Connect the lines.

10. Save the process.

40 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Defining advanced hierarchical processes

You can use the OPLaunchChildProcesses integration service in a hierarchical process where a parent
object in one process can launch child processes for objects that are associated with the parent object.
This example illustrates how to handle a large number, even hundreds, of child action items without
compromising server performance.

Before you begin
Complete the tasks in “Defining basic hierarchical processes” on page 37. You build on that knowledge
and data in this example.

About this task

The basic hierarchical processes example cannot throttle process execution for linked processes and is
best suited for small data volumes. The advanced hierarchical processes example is designed for large
data volumes. You use the BPM API to launch a child process for every value in the ChildInputs list
variable, a private variable you create. The APIs can control how quickly the processes are launched,
including a delay between processes to throttle execution if needed. Lastly, you can optionally extend the
parent process to wait for child processes to complete before moving to the next activity.

Defining a parent process to use OPLaunchChildProcesses
Modify the parent process in the basic hierarchical process to use the OPLaunchChildProcesses
integration service.

Procedure

1. Duplicate the parent process, Issue Remediation, that you created for the basic hierarchical
processes example. Rename it to Issue Remediation Adv.

2. Duplicate the child process, Complete Action Items, that you created for the basic hierarchical
processes example. Rename it to Complete Action Items - Adv.

Chapter 5. Process authoring examples 41

3. Click the Variables tab.
a) Create a private variable whose type is Map (System Data). Name it childInputs.
b) Select List to make childInputs a List of Maps.
c) Select Has default for Default Value.

4. Click the Definition tab. The process has three swimlanes:

• Issue Assignee
• Action Item Owners
• System

5. In the Action Item Owners swimlane, select the Complete Action Item node.
a) Rename the node to Launch Child Processes.
b) Change it from a Linked process to a System Task.
c) Click General. In Behavior, select None in Loop type.
d) Click Implementation. In Type, select System Task.
e) In Implementation, select the OPLaunchChildProcesses integration service.
f) Click Data Mapping. In Input Mapping, define the following fields:

• In ProcessName, type the name of the child process, Complete Action Item - Adv.
• In InputValues, type tw.local.childInputs .
• In Delay, type 1000.
• In AddDependency, type true.

6. In the System swimlane, create a Script activity node after Compute Action Items:
a) Name it Map Input Values.
b) Click Script.
c) Enter a script like the following example. If you use the variable names for the parent and child

processes as given in this example, you do not have to modify the script.

//initialize childInputs List of Maps
tw.local.childInputs = new tw.object.listOf.toolkit.TWSYS.Map();
//loop for every action item
for (var i=0; i<tw.local.actions.listLength; i++) {
 //get the action item
 var action = tw.local.actions[i];
 //initialize a map for this action item
 var map = new tw.object.toolkit.TWSYS.Map();
 //map values from the action to the input variable names of the child process
 map.put("actionItemId", action.base.id);
 //insert map to the childInputs list
 tw.local.childInputs.insertIntoList(i, map);

d) Reconnect the arrows from Compute Action Items to now go to Map Input Values. Connect an
outgoing arrow from Map Input Values to Launch Child Processes.

42 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

7. Save the process.

Results
The OPLaunchChildProcesses integration service launches the child process but does not wait for the
child to be completed before it moves to the next activity. After every child process in the list has been
launched, the OPLaunchChildProcesses integration service is completed and the parent process resumes
and moves to the next activity node. This means that in the Issue Remediation example after Launch
Child Processes, the Issue Assignee gets the task for Do Final Review, regardless of whether the child
processes have completed or not. Also, if the OPLaunchChildProcesses AddDependency input is true, it
makes a relationship between the parent process and child process. Without this relationship, the two
processes have no connection after the child process has been launched. With the dependency
relationship, the parent process cannot finish until all child processes are finished. Additionally, if you
terminate the parent process, the child processes are also terminated. Depending on your use cases, this
may be sufficient for your needs.

For information about relationships in IBM Business Process Manager, see https://www.ibm.com/
support/knowledgecenter/SSFTN5_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/tcrtrelation.html.

What to do next

You are finished with the advanced hierarchical example. You can optionally extend the parent process to
wait for child processes to complete before moving to the next activity.

Extending a parent process to wait for child processes to complete

You can optionally extend the parent process to wait for child processes to complete before moving to the
next activity. You define an undercover agent that enables child processes to a send message to the
parent process when it is finished.

The following figure shows the extension that is explained in this part of the example.

Chapter 5. Process authoring examples 43

https://www.ibm.com/support/knowledgecenter/SSFTN5_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/tcrtrelation.html
https://www.ibm.com/support/knowledgecenter/SSFTN5_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/tcrtrelation.html

Defining the undercover agent

Define the undercover agent. An undercover agent defines a queue where processes can send and listen
for messages. An undercover agent is attached to a message event or a content event in a process or
business process definition and calls a service to handle the event.

For more information about undercover agents, see https://www.ibm.com/support/knowledgecenter/
SSFTN5_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/using_undercover_agents.html.

Procedure

1. Open the Process Designer desktop editor.
2. Open the process application with your processes.
3. In Implementation, click Undercover Agent.

a) In Name, type AI_Complete.
b) In Schedule Type, select On Event.
c) In Details, select String in Variable Type.

44 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

https://www.ibm.com/support/knowledgecenter/SSFTN5_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/using_undercover_agents.html
https://www.ibm.com/support/knowledgecenter/SSFTN5_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/using_undercover_agents.html

4. Save the undercover agent.

Changing the child process to send the undercover agent message
Update the child process to have a variable reference to the parent process ID and to create a message
that is sent to the undercover agent.

Procedure

1. Open the Process Designer web editor.
2. Open the child process that is named Complete Action Item - Adv.
3. Click the Variables tab and add a private variable of type String (System Data). Name it ParentPID.
4. Click the Definition tab.
5. Click the End node.
6. In the Properties pane, click the Implementation tab.

a) In End event type, select Message.
b) In Event Properties, select the AI Complete undercover agent in Attached message UCA.

7. Click Data Mapping. In Input Mapping, define the following field:

• In InputValues, type tw.local.ParentPID.

Chapter 5. Process authoring examples 45

8. Save the process.

Extending a parent process to wait for undercover agent messages

Extend the existing parent process to wait for the child processes to be completed before it continues.
This uses a counter to track when the child processes complete. An Intermediate Message Event (IME) is
used to receive the undercover agent messages that are sent when each child process ends.

Using an undercover agent allows for asynchronous communication between different process instances.
In this case, you can control the parent process by waiting for enough messages to be sent by the child
processes as they end.

Procedure

1. Open the Process Designer web editor.
2. Open the parent process that is named Issue Remediation Adv.
3. Click the Variables tab.

a) Create a private variable whose type is Integer (System Data). Name it ChildrenFinished. Select
Has Default and set it to 0.

b) Create a private variable whose type is String (System Data). Name it currentProcessId.
4. Click the Definition tab. This process has three swimlanes:

• Issue Assignee
• Action Item Owners
• System

5. In the Action Item Owners swimlane, add two nodes after the Launch Child Processes System
task.

6. First, add an Intermediate event.
a) Name it Wait For Child.

46 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

b) Click Implementation.
c) In Implementation, select AI_Complete for Attached message UCA.
d) Select Consume Message.
e) Select Durable subscription.
f) Click Data Mapping, select Output (String) in Correlation Variable. In the mapping of Output =,

type tw.local.currentProcessId.
g) Click Pre&Post and add the following assignment in Post Assignments:

tw.local.ChildrenFinished = tw.local.ChildrenFinished + 1

7. Next, add an exclusive gateway.
a) Name it Have Children Finished.
b) Create an outgoing arrow from the exclusive gateway node back to the Intermediate Event.
c) Create a second arrow from the gateway to the next step, Do Final Review task.
d) Create an outgoing arrow from the Intermediate Event to the Gateway.
e) In Implementation, set the Default flow as To Wait For Child.
f) Set the To Do Final Review condition to the following expression:

1. tw.local.ChildrenFinished ==
tw.local.actions.ListLength

8. Open the Map Input Values script node and click Script.
a) Insert the following line to the beginning of the script.

tw.local.currentProcessId = tw.system.currentProcessInstance.id;

b) Locate the line map.put("actionItemId", action.base.id); . Insert the following lines
after it.

//map the process instance id to the child process
 map.put("ParentPID", tw.local.currentProcessId);

This passes the process instance id to the new input variable in the child process.

The final script would be:

tw.local.currentProcessId = tw.system.currentProcessInstance.id;

//initialize childInputs List of Maps
tw.local.childInputs = new tw.object.listOf.toolkit.TWSYS.Map();

//loop for every action item
for (var i=0; i<tw.local.actions.listLength; i++) {
 //get the action item
 var action = tw.local.actions[i];
 //initialize a map for this action item
 var map = new tw.object.toolkit.TWSYS.Map();
 //map values from the action to the input variable names of the child process
 map.put("actionItemId", action.base.id);
 //map the process instance id to the child process
 map.put("ParentPID", tw.system.currentProcessInstance.id);
 //insert map to the childInputs list
 tw.local.childInputs.insertIntoList(i, map);
}

9. Save the process.

Results
Now the Do Final Review task will not be assigned to the Issue Assignee until all the Launch Child
Processes are finished.

Chapter 5. Process authoring examples 47

Retrieving a list of child objects
You can retrieve a list of child objects and display them on a coach page. The user can view the list, select
one or more children from the list, and update the parent object or any selected child objects. In this
example, you find Risk objects under a Risk Assessment object and show them in a coach page table. You
create a new client-side human service, define a variable for the list of child objects, and retrieve the child
objects for the parent object. The OPHierarchicalQuery service will return more information than
OPGetChildAssociations.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name for your user
interface.

6. Click the Variables tab.
a) Click Private and provide a name, such as, ReturnedRisk.
b) Select Is list.
c) Click Select and choose a business object, such as, OPSOXRisk.

7. Select the Diagram tab.
a) Drag a Service from the palette onto the canvas. Name it GetRisks.
b) On the Implementation pane, click Call a service.
c) Click Select and choose OPHierarchicalQuery.

8. Click the Data Mapping pane, and provide entries for the following fields:
a) In systemTask, specify whether the task accesses OpenPages as a system account or the current

account.
b) In parentType, enter the ID or full path of the parent object, such as, "RiskAssessment". This

can be a local variable.
c) In parentId, enter the ID or full path of the parent object, such as, tw.local.RA_ID. This can be

a local variable.
d) In isPrimary, enter false.
e) In isCaseInsensitive, enter true.
f) In fields, enter "[SOXRisk].*".
g) In isDirect, enter true.
h) In Output Mapping, select returnObjects (List of ANY) and type tw.local.ReturnedRisk.

9. Click the Coaches tab and select a template.
a) Drag a table from the palette onto the canvas.
b) In the table view, bind the ReturnedRisk variable to the table.
c) Create the column header for the first column.

• Drag an Output Text to the table.
• Name the column header Risk Name.
• Bind the column to the ReturnedRisks.currentItem.risk.base.name variable.

d) Create the column header for the second column.

48 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

• Drag an Output Text to the table.
• Name the column header Risk Description.
• Bind the column to the ReturnedRisks.currentItem.risk.base.description variable.

10. Save the coach service.

Locking and unlocking objects

You can lock and unlock objects in a business process.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name, such as, Lock
Incident.

6. Click the Diagram tab and build the process.
7. At the point when you want to lock an object, drag a Service from the palette onto the canvas.

Connect the arrows link from the previous node to the new service.

8. Click the service node, and select the Implementation pane.
9. In Behavior section, select Call a Service and then select the OPLockObject integration service from

the OpenPages Platform Toolkit.
10. Select the Data Mapping pane and enter a specific object ID or tw.local.objectId in objectId,
11. Save the changes to the service.

Note: To unlock an object, follow the same steps but use the OPUnlockObject integration service.

Sending email notifications

Chapter 5. Process authoring examples 49

You can define business processes that will send email notifications at designated points in a business
process. In this example, Risk objects are retrieved from OpenPages and an email is sent to the object's
primary owner. The email contains a link to a review task in the body text.

The following figure shows the business process that is explained in this example.

A Parallel Gateway is used in this process because the email contains a URL link to a process task that
does not yet exist. The Parallel Gateway starts the Send Email system task and simultaneously assigns a
UI task (the task that the URL contains a link to). You must add a script to the system task that looks up
the other task's ID.

The Send Email node calls a nested service, which is shown in the following figure.

The nested service completes the following functions:

• retrieves the object by using OPGetObject
• retrieves system default properties by using Email Get System Default Properties
• retrieves the URL to OpenPages by using OPGetBaseURL
• constructs the email subject and body text by using a script
• sends the email by using Email Send IBM BPM Email

50 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Procedure

1. Open the Process Designer desktop editor.
2. Open the Process Designer.
3. Add dependencies to the OpenPages toolkits.

a) Click Toolkits and select OpenPages Platform.
b) Click Toolkits and select OpenPages Solutions.

4. Click New beside Processes > Business Process Definition, and name it Review risk and send
email.

5. Create the first nodes in the business process (these nodes are not part of this example).
6. At the point when you want an email to be sent, drag a Gateway from the palette to the System

swimlane.
a) In the Properties pane, click the General tab.
b) Select Parallel Gateway in Gateway Type.
c) Leave Outgoing Flow Percentages on the Simulation tab empty (to be completed later

automatically).
7. Drag an Activity from the palette to the Team swimlane. Name it Review Risk.

a) In the Properties pane, click the Implementation tab. Select User Task. Click Select and choose
the client-side human service representing the coach page used by the email recipient when
clicking the link in the email.

b) Click Data Mapping, and add the input and output mapping that is required for the coach page.
8. Drag an Activity from the palette to the System swimlane. Name it Send Email.
9. In the Properties pane, click the Implementation tab. Select System Task. Click New and create a

new integration service. Name it SendEmailForRiskOwner.
10. Click Variables and define the following variables required by the integration service.

• smtpHost (String)
• defaultFromAddress (String)
• emailTo (String)
• emailSubject (String)
• emailBody (String)
• riskObject (OpSOXRisk)
• opBaseUrl (String)

11. Drag a Nested Service from the palette onto the canvas. Define this node to retrieve the object. The
object's owner will be the email recipient.
a) In the Properties pane, click the Implementation tab, and select the OPGetObject OpenPages

integration service.
b) Click the Data Mapping tab. In Input Mapping, enter tw.local.objectId in ObjectId. In

Output Mapping, enter tw.local.riskObject in outObject(ANY).
12. Drag a Nested Service from the palette. This node retrieves system default properties that are used

in the email, for example, an SMTP host and a default from address.
a) In the Properties pane, click the Implementation tab, and select the Email Get System Default

Properties system integration service. This is an integration service that is delivered by IBM
Business Process Manager.

b) Click the Data Mapping tab. In Output Mapping select smtpHost and defaultFromAddress.
13. Drag a Nested Service from the palette onto the canvas. This node retrieves the base URL.

a) In the Properties pane, click the Implementation tab, and select the OPGetBaseURL OpenPages
integration service.

Chapter 5. Process authoring examples 51

b) Click the Data Mapping tab. In Output Mapping, enter tw.local.opBaseUrl in baseURL
(String).

14. Drag a Server Script from the palette onto the canvas. This node constructs the email subject and
body text.
a) In the Implementation pane, enter the following script:

// set log level
log.infoEnabled = true;

log.info("smtp host: " + tw.local.smtpHost);
log.info("defaultFromAddress: " + tw.local.defaultFromAddress);

// find e-mail address of the risk object owner, and set it to a variable
var user = tw.local.riskObject.OPSS_Rsk__Owner;
var user1 = tw.system.org.findUserByName(user);
log.info("Risk Owner: " + user1);
tw.local.emailTo = user1.attributes['Task Email Address'];
log.info("email to: " + tw.local.emailTo);

// set e-mail subject
tw.local.emailSubject = '[BPM] Requesting your review on ' + tw.local.riskObject.base.name;

// find task id of the coach page to review the risk object
var taskId = tw.system.currentProcessInstance.tasks[tw.system.currentProcessInstance.tasks.length-1]
 .id.split('\.')[1];
for(var i=0;i<tw.system.currentProcessInstance.tasks.length;i++) {
 if (tw.system.currentProcessInstance.tasks[i].subject.match(".*Review.*")) {
 taskId = tw.system.currentProcessInstance.tasks[i].id.split('\.')[1];
 }
}

// find process id
var procId = tw.system.currentProcessInstance.id.split('\.')[1];

// set e-mail content, which contains link to object detail page, BPM task page, and BPM process page
tw.local.emailBody = "<p>Please review Object Link : " + tw.local.opBaseUrl +
 "openpages/view.resource.do?fileId=" + tw.local.objectId + " and</p>";
tw.local.emailBody += "<p>Task Link : https://bpmserver.com:9443/ProcessPortal/
 launchTaskCompletion?taskId=" + taskId + " , finally</p>";
tw.local.emailBody += "<p>Process Link : https://bpmserver.com:9443/ProcessPortal/
 launchInstanceUI?instanceId=" + procId + "</p>";

15. Drag a Nested Service from the palette onto the canvas. This node sends the email.
a) In the Properties pane, click the Implementation tab, and select the Email Send IBM BPM Email

system integration service
b) In Input Mapping , specify the following variables:

• tw.local.emailTo in to (String)
• tw.local.defaultFromAddress in from (String)
• tw.local.emailSubject in subject (String)
• tw.local.emailBody in messageText (String)
• "text/html" in contentType (String)
• tw.local.smtpHost in smtpHost (String)

16. Connect all the nodes with arrows.
17. Save the business process.

Terminating a running process

You can use the Inspector in IBM® Process Designer to terminate an instance of an erroneous running
process. It can also be used to manage, test, and administer business process instances. You access the
Inspector on the Process Admin Console.

For more information about the Inspector, see http://www.ibm.com/support/knowledgecenter/en/
SSV2LR/com.ibm.wbpm.wle.editor.doc/topics/running_debugging_procs.html (http://www.ibm.com/

52 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

http://www.ibm.com/support/knowledgecenter/en/SSV2LR/com.ibm.wbpm.wle.editor.doc/topics/running_debugging_procs.html
http://www.ibm.com/support/knowledgecenter/en/SSV2LR/com.ibm.wbpm.wle.editor.doc/topics/running_debugging_procs.html

support/knowledgecenter/en/SSV2LR/com.ibm.wbpm.wle.editor.doc/topics/
running_debugging_procs.html).

Procedure

1. Access the Process Admin Console.
2. Click Process Inspector.

3. Find the instance of the process you want to terminate.
4. Highlight the instance and click Terminate.

Chapter 5. Process authoring examples 53

54 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Chapter 6. Error messages and handling
Error messages and handling are managed by OpenPages integration services.

The OpenPages integration services can issue error messages for various reasons, such as, user input
errors or configuration errors. When an error occurs, the system terminates the process instance and the
integration service. However, you can overwrite the default behavior by adding error handling and error
message codes to coach pages. For example, the services can show a specific error message or recover
from the error under certain conditions.

For more information about error handling in IBM Business Process Manager, see http://www.ibm.com/
support/knowledgecenter/SSFTDH_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/
handling_exceptions.html and (ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.ibpmgr/
ibpmgr/8.0/ProcessDesigner/BPM80_ErrorAndTerminationHandling.pdf).

Error messages issued by integration services
OpenPages integration services can issue the following error messages.

OP26001
Requested operation could not be understood by the OpenPages server (HTTP error code 400). Refer
the BPM log file for more detail.

OP26002
Requested operation failed due to the authentication failure (HTTP error code 401).

OP26003
You do not have permission to perform requested operation (HTTP error code 403).

OP26004
Requested object not found by the OpenPages server (HTTP error code 404).

OP26005
Requested operation failed due to the resource conflict (HTTP error code 409).

OP26006
Requested range is not satisfiable (HTTP error code 416).

OP26007
Requested operation failed due to internal server error (HTTP error code 500). Refer the BPM log file
for more detail.

OP26008
Connection refused by the OpenPages server.

OP26009
Requested operation failed by the timeout.

OP26010
Initializing connection to OpenPages server failed. Verify the OpenPages base URL configuration.

OP26011
Requested operation failed due to unsatisfiable arguments.

OP26012
Requested operation failed due to system task authentication error. Verify OpenPages system task
credential configuration.

OP26013
Requested operation failed due to namespace binding error. Verify the namespace binding
configuration.

OP26014
OpenPages server response is not expected JSON format.

http://www.ibm.com/support/knowledgecenter/SSFTDH_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/handling_exceptions.html
http://www.ibm.com/support/knowledgecenter/SSFTDH_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/handling_exceptions.html
http://www.ibm.com/support/knowledgecenter/SSFTDH_8.5.7/com.ibm.wbpm.wle.editor.doc/topics/handling_exceptions.html
ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.ibpmgr/ibpmgr/8.0/ProcessDesigner/BPM80_ErrorAndTerminationHandling.pdf
ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.ibpmgr/ibpmgr/8.0/ProcessDesigner/BPM80_ErrorAndTerminationHandling.pdf

OP26999
Requested operation failed to access OpenPages. Refer to the BPM log file for more detail.

Adding error handling to a client-side human service

You can add error handling to client-side human services so that integration services display error
messages to users.

For example, the following message is issued if an integration service tries to access an OpenPages object
that does not exist.

If you do not add error handling to client-side human services, error messages are not displayed to users.

In this example, you create a client-side human service and add error handling to a coach page.

Procedure

1. Open the Process Designer web editor.
2. Create a process app.
3. Open the process app in the Process Designer.
4. Add dependencies to the OpenPages toolkits.

a) Click + next to Toolkits and select OpenPages Platform.
b) Click + next to Toolkits and select OpenPages Solutions.

5. Click New beside User Interface > Client-Side Human Service, and enter a name.
6. Click the Diagram tab.
7. Drag an Event Handler from the palette onto the canvas. The event handler does not require

connecting arrows.
8. In the Properties pane, click the Implementation tab.
9. In Triggering Event, select Error event.

10. In Behavior, select either Catch all errors or Catch specific errors and specify an error that you
want to test for. For a list of all error codes, see “Error messages issued by integration services” on
page 55.

11. To implement the event handler, double-click the event handler activity in the diagram.
12. Drag a Coach from the palette onto the canvas.
13. Drag an End Event from the palette onto the canvas. In the Properties pane, click the

Implementation tab. In Event Type, select Error end event. Optionally, if you want to handle the
case as expected behavior and proceed to the parent process, leave it as End event.

14. Click the Variables tab, and add private variables to hold the error codes and data. Name them
code1 and msg1. Both variables are Strings.

15. In the Properties pane, select the Pre&Post tab. Add the following lines to the Pre-Execution Script:

tw.local.code1 = tw.error.code;

tw.local.msg1 = tw.error.data;

56 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

16. Click the Coaches tab. Add Output Text views to the coach page and bind them to code1 and msg1.

17. Optionally, change the color of the error code and error message controls. For example, you can add
an HTML attribute that displays the error message as red text.

18. Save the client-side human service.

Chapter 6. Error messages and handling 57

58 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
This document may describe products, services, or features that are not included in the Program or
license entitlement that you have purchased.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Location Code FT0
550 King Street
Littleton, MA

01460-1250
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

Copyright

Licensed Materials - Property of IBM Corporation.
© Copyright IBM Corporation, 2003, 2019.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee
or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

Trademarks

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide.

60 Notices

Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at " Copyright and trademark information " at www.ibm.com/legal/
copytrade.shtml.

Notices 61

http://www.ibm.com/legal/copytrade.shtml

62 IBM OpenPages GRC Version 8.0.0 : OpenPages Business Process Author's Guide

Index

A
application

overview 1

C
child objects

retrieve list of 48
child processes

how to launch 37, 38, 41
how to send UCA message 45

child processes (advanced)
how to launch 41

client-side human services
adding error handling 56
using OPbjectSelection 17

computed fields
adding to a coach page 23, 25, 27

E
email notifications

adding to a business process 49
enumerated fields with dependent picklist

adding to a coach page 21
Error handling

integration services 55

F
file attachments

adding 28
downloading 30

I
integration services

error messages issued 55
OPAssociateChildren 7
OPAssociateParents 7
OPCopyObjects 7
OPCreateObject 8
OPDeleteObject 8
OPDissociateChildren 8
OPDissociateParents 8
OPExecuteReportFragment 9
OPGenericObjectQuery 9
OPGetBaseURL 10
OPGetChildAssociations 10
OPGetEnumeratedValues 10
OPGetObject 10
OPGetParentAssociations 11
OPHierarchicalAssigneeQuery 11
OPHierarchicalQuery 12
OPLaunchChildProcesses 12

integration services (continued)
OPLockObject 13
OPMakeAddNewLink 13
OPMakeDetailLink 14
OPMakeDocumentLink 14
OPMoveObjects 14
OPPerformRESTGet 15
OPUnlockObject 15
OPUpdateObject 15
overview 7
Team Filter by Object Field 16

L
localization resources

using 35

O
objects

creating objects without user input 32
locking and unlocking 49
terminating a running process 52

OPAssociateChildren
integration service 7

OPAssociateParents
integration service 7

OPCopyObjects
integration service 7

OPCreateObject
integration service 8

OPDeleteObject
integration service 8

OPDissociateChildren
integration service 8

OPDissociateParents
integration service 8

OpenPages Solutions Toolkit
overview 5

OPExecuteReportFragment
integration service 9

OPGenericObjectQuery
integration service 9

OPGetBaseURL
integration service 10

OPGetChildAssociations
integration service 10

OPGetEnumeratedValues
integration service 10

OPGetObject
integration service 10

OPGetParentAssociations
integration service 11

OPHierarchicalAssigneeQuery
integration service 11

OPHierarchicalQuery
integration service 12

 63

OPLaunchChildProcesses
integration service 12

OPLockObject
integration service 13

OPMakeAddNewLink
integration service 13

OPMakeDetailLink
integration service 14

OPMakeDocumentLink
integration service 14

OPMoveObjects
integration service 14

OPPerformRESTGet
integration service 15

OPUnlockObject
integration service 15

OPUpdateObject
integration service 15

Owner fields
adding to coach page 23

P
parent processes (advanced)

how to define the undercover agent) 44
how to extend to wait for child processes 43
how to extend to wait for UCA messages 46

process authoring examples
adding computed fields to a coach page 23, 25, 27
adding enumerated field with dependent picklist 21
adding error handling in a client-side human service 56
adding file attachments 28
adding Owner fields 23
adding single/multiple enumerated fields 20
assigning a process task based on a field value 18
changing child processes to send UCA message 45
create an object without user input 32
defining the undercover agent (advanced) 44
downloading file attachments 30
extending parent processes (advanced) 43, 46
launching child processes 37, 38
launching child processes (advanced) 41
lock and unlock objects 49
retrieve list of child objects 48
sending email notifications 49
terminating a running process 52
updating GRC objects 34
using localization resources 35
using OPObjectSelection 17
using rich text fields 19

process authoring examples (advanced)
launching child processes 41

R
rich text fields

differences in OP and IBM BPM 19

S
severity distribution

overview 5
single/multiple enumerated fields

single/multiple enumerated fields (continued)
adding to a coach page 20

T
task assignments

assigning based on a field value 18
Team Filter by Object Field

integration service 16

U
updating OpenPages objects

using a client-side human service 34

64

IBM®

	Contents
	Note
	
	Introduction
	Chapter 1. Overview
	Chapter 2. OpenPages Platform Toolkit
	Resources in the OpenPages Platform Toolkit

	Chapter 3. OpenPages Solutions Toolkit
	Resources in the OpenPages Solutions Toolkit

	Chapter 4. OpenPages integration services
	OPAssociateChildren
	OPAssociateParents
	OPCopyObjects
	OPCreateObject
	OPDeleteObject
	OPDissociateChildren
	OPDissociateParents
	OPExecuteReportFragment
	OPGenericObjectQuery
	OPGetBaseURL
	OPGetChildAssociations
	OPGetEnumeratedValues
	OPGetObject
	OPGetParentAssociations
	OPHierarchicalAssigneeQuery
	OPHierarchicalQuery
	OPLaunchChildProcesses
	OPLockObject
	OPMakeAddNewLink
	OPMakeDetailLink
	OPMakeDocumentLink
	OPMoveObjects
	OPPerformRESTGet
	OPUnlockObject
	OPUpdateObject
	Team Filter by Object Field

	Chapter 5. Process authoring examples
	Using OPObjectSelection client-side human service
	Assigning a process task based on a field value
	Adding rich text fields to a coach page
	Adding single or multiple enumerated fields to a coach page
	Adding enumerated fields with a dependent picklist to a coach page
	Adding computed fields to a coach page
	Adding Owner fields to a coach page
	Adding a link to an OpenPages Detail page on a coach page
	Adding a link to a Cognos report on a coach page
	Adding file attachments to a coach page
	Downloading file attachments on coach pages
	Creating OpenPages objects with an integration service
	Updating OpenPages objects with a client-side human service
	Using localization resources
	Defining basic hierarchical processes
	Defining a child process
	Defining a parent process

	Defining advanced hierarchical processes
	Defining a parent process to use OPLaunchChildProcesses
	Extending a parent process to wait for child processes to complete
	Defining the undercover agent
	Changing the child process to send the undercover agent message
	Extending a parent process to wait for undercover agent messages

	Retrieving a list of child objects
	Locking and unlocking objects
	Sending email notifications
	Terminating a running process

	Chapter 6. Error messages and handling
	Error messages issued by integration services
	Adding error handling to a client-side human service

	Notices
	Index
	A
	C
	E
	F
	I
	L
	O
	P
	R
	S
	T
	U

